This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Dielectric and Index of Refraction Properties of Binary Mixtures of Polyoxyethene Glycol Monobutyl Ethers with Water

Joseph Macneil^{ab}; Dale Turner^a; R. Palepu^a ^a Department of Chemistry, University College of Cape Breton, Sydney, Nova Scotia, Canada ^b Department of Chemistry, University of California, La Jolla, CA, U.S.A.

To cite this Article Macneil, Joseph , Turner, Dale and Palepu, R.(1994) 'Dielectric and Index of Refraction Properties of Binary Mixtures of Polyoxyethene Glycol Monobutyl Ethers with Water', Physics and Chemistry of Liquids, 27: 4, 225 – 233

To link to this Article: DOI: 10.1080/00319109408029531 URL: http://dx.doi.org/10.1080/00319109408029531

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1994, Vol. 27, pp. 225–233 Reprints available directly from the publisher Photocopying permitted by license only

DIELECTRIC AND INDEX OF REFRACTION PROPERTIES OF BINARY MIXTURES OF POLYOXYETHENE GLYCOL MONOBUTYL ETHERS WITH WATER

JOSEPH MACNEIL*, DALE TURNER and R. PALEPU**

Department of Chemistry, University College of Cape Breton, Sydney, Nova Scotia, Canada B1P 6L2

(Received 20 September 1993)

Dielectric constants and indices of refraction of aqueous mixtures of the homologous series of polyoxyethene glycol mono-n-butyl ethers $C_4H_9O(CH_2CH_2O)_mH$ (where m = 1 to 3) were measured. From the experimental data, excess dielectric permittivities, dielectric molar susceptibilities, molar and molar orientational polarizabilities were evaluated. Also excess Lorentz-Lorentz molar refractions were evaluated and the results were discussed in terms of departure from ideality and intermolecular interactions in the mixtures.

KEY WORDS: Dielectric constants, Refractive indices, Excess properties, Alkoxy alcohols.

INTRODUCTION

In an earlier study, we have reported the effect of microheterogeneity on bulk and surface properties of binary mixtures of polyoxyethene glycol monobutyl ethers with water¹. In the mixtures of water with hydrophobic alcohols, the dependency of excess thermodynamic properties on the composition suggests the coexistence of microphases in the water rich region². Several intensive physical properties of liquids, such as static dielectric constant (ε), viscosity (η) and index of refraction (n_D) were commonly used solvent parameters to interpret medium effect upon solute solubilities, acid-base equilibria, electrolytic behaviour and reaction mechanisms for polar and ionic species³⁻⁵. The magnitude of the static dielectric constant of a liquid system is determined by the permanent electric moments, and the polarizabilities of its individual molecules and by the nature of their mutual orientation. Hence a study of this property should be a useful tool in the investigation of intermolecular forces and the local order which these forces produce in binary polar mixtures. Dielectric constants of the binary mixtures of water + $C_4H_9O(CH_2CH_2O)_m H(m = 1 \text{ and } 2)$ were measured at 298 K over a whole composition range. Also the index of refraction of aqueous mixtures with $C_4H_9O(CH_2CH_2O)_mH$ (where m = 1 to 3) were measured at five different temperatures to evaluate the variations in electronic polarizability of the systems.

^{**} To whom correspondence may be addressed.

^{*} Present address: Department of Chemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA. 92093-0506, U.S.A.

EXPERIMENTAL SECTION

2-Butoxyethanol (ethylene glycol monobutyl ether or $C_4 E_1$), 2-(2-butoxyethoxy) ethanol (Diethylene glycol monobutyl ether or $C_4 E_2$) were purchased from Aldrich Chemicals of stated purity 99 + %. Triethylene glycol monobutyl ether ($C_4 E_3$) was purchased from Tokyo Kasei Chemicals. All chemicals were purified by distillation under reduced pressure and stored over molecular sieves. All mixtures were prepared by mass with a precision of 0.1 mg from thoroughly degassed nanopure water. The mole fractions are believed to be reliable to within 1×10^{-4} .

Dielectric constants were measured by changes in dielectric cell capacitance with a Sargent Model V cathode coupled oscillator. The instrument was calibrated using literature values for pure solvents⁶: methanol, acetone, nitrobenzene and acetonitrile. Dielectric constants of the pure substances and their mixtures with water at 298 K were determined employing the procedures described in the literature⁷. Reproducibility of measurements was approximately equal to ± 0.15 dielectric constant unit. The calibration was periodically checked with standard solvents during the course of the investigation and no significant change was observed throughout the course of the study. The index of refraction for the Na D-line was measured with a thermostatted Abbe-3L refractometer (Bausch and Lomb) with an error of less then 0.0001 unit. The instrument was calibrated with a glass piece of known refractive index ($n_p = 1.5125$) supplied with the instrument. The instrument was also checked by measuring the refractive index of purified water, methanol and n-hexane at known temperatures⁷. Densities were measured using a SODEV Model-02D vibrating-tube densimeter operating in a flow mode and an Anton-Paar DMA 45 vibrating-tube densimeter operating in static mode. A SODEV temperature controlled bath was used in the measurement of densities. Densities have an estimated reproducibility of 5.0×10^{-5} .

RESULTS AND DISCUSSION

The experimentally determined physical properties of the pure components at 298 K along with the literature values are listed in Table 1. The dielectric properties of $H_2O + C_4E_1$ system at 298 K were reported in the literature⁸ and our value 9.47 for the dielectric constant of C_4E_1 is in excellent agreement with the literature value of 9.43 (Table 1).

To estimate the strength of intermolecular interactions between the components of the mixture, an adequate approach is to evaluate the departure from ideal behaviour of noninteracting components⁹. The departure from ideality ($\Delta \epsilon$) is given by:

$$\Delta \varepsilon = \varepsilon - \varepsilon^{id} \tag{1}$$

where ε and ε^{id} are the experimental and ideal dielectric constants of the mixtures respectively. The ideal dielectric constants of the mixtures were computed by using Dacroocq's formula¹⁰ in the general form:

$$\varepsilon^{id} = (1 - Y_2)\varepsilon_1 + Y_2\varepsilon_2 + 2\left[\frac{1}{\varepsilon^{id}} - \frac{(1 - Y_2)}{\varepsilon_1} - \frac{Y_2}{\varepsilon_2}\right]$$
(2)

Compound	Property	This Study	Literature
C₄E₁	Dielectric constant	9.47	9.43ª
- .	Density*	0.89647	0.89648*
	Refractive Index	1.4175	1.4177 ^b
C₄E,	Dielectric constant	10.93	
	Density*	0.95218	0.9528 ^c
	Refractive Index	1.4302	<u></u>
C ₄ E ₃	Density*	0.98275	0.9830°
	Refractive Index	1.4380	

 Table 1 Physical properties of pure compounds at 298 K.

* units: g.cm⁻³, a: Ref (8), b: Ref (6), c: Ref (1).

where ε_1 and ε_2 are the dielectric constants of water and C_4E_1 or C_4E_2 , respectively, Y_2 is the volume fraction defined on partial molar volume basis:¹¹

$$Y_{2} = \frac{X_{2}\bar{V}_{2}}{X_{2}\bar{V}_{2} + (1 - X_{2})\bar{V}_{1}}$$
(3)

where \overline{V}_2 and \overline{V}_1 are the partial molar volumes of C_4E_1 or C_4E_2 and water, respectively. The partial molar volumes \overline{V}_1 and \overline{V}_2 were obtained using the following equations¹¹, modified in the mole fraction scale:

$$\bar{V}_{1} = M_{1} \left[\frac{1}{\rho} \right] - \bar{M} X_{2} \frac{d \left[\frac{1}{\rho} \right]}{d X_{2}}$$
(4)

$$\bar{V}_2 = M_2 \left[\frac{1}{\rho}\right] - \bar{M} X_1 \frac{d\left\lfloor\frac{1}{\rho}\right\rfloor}{dX_2}$$
(5)

and

$$\bar{M} = X_1 M_1 + X_2 M_2 \tag{6}$$

It was found that $\Delta \varepsilon$ values are negative and the plot of $\Delta \varepsilon$ vs. Y_2 at 298 K (Figure 1) exhibits a pronounced minimum generally centered at $Y_2 \approx 0.55$ to 0.60 and the $\Delta \varepsilon$ values are more negative for $C_4 E_1$ than $C_4 E_2$. The values of molar susceptibility $(\chi_e V)_m$, molar polarizability of Kirkwood¹² P_k and molar orientational polarizability derived by Frohlich¹³ P_f , were calculated using the following equations respectively:

$$(\chi_e V)_m = (\varepsilon - 1) V_m \tag{7}$$

$$P_{k} = \left[\frac{(\varepsilon - 1)(2\varepsilon + 1)V_{m}}{9\varepsilon}\right]$$
(8)

$$P_{f} = \left[\frac{(\varepsilon - n_{D})(2\varepsilon + n_{D})V_{m}}{\varepsilon(n_{D} + 2)^{2}}\right]$$
(9)

where V_m and n_D are the molar volume and refractive index of the mixture. Excess values of these quantities (Z^E) were calculated assuming mole fraction additivity for an ideal mixture:

$$Z^{E} = Z - (X_{1}Z_{1} + X_{2}Z_{2})$$
(10)

The plots of the derived excess quantities (Z^E) , against mole fraction of C_4E_2 , exhibited negative deviations from the ideal behaviour (Figures 2-4). Refractive index data for the binary systems at all temperatures was fitted into a polynomial equation as a function of C_4E_n .

$$n_D = \sum_{i=0}^{n} A_i X_2$$
 (11)

The coefficients along with standard deviation calculated by the least-squares method are listed in Table 2.

Lorentz-Lorentz molar refraction (R) is related to electronic polarizability α of molecules by the expression:

$$R = \frac{n_D^2 - 1}{n_D^2 + 2} \cdot \frac{M}{d} = \frac{4}{3} \Pi \alpha N$$
(12)

Figure 1 Plot of $\Delta \varepsilon$ vs. Volume Fraction of $C_{4}E_{n}$.

Figure 2 Plot of $\Delta(\chi_e V)_m$ vs. Mole Fraction of $C_4 E_n$.

Figure 3 Plot of Excess P_k vs. Mole Fraction of $C_4 E_n$.

Figure 4 Plot of Excess P_f vs. Mole Fraction of $C_4 E_n$.

where M is the molecular mass, d is the density and N is Avagadro's number. The excess molar refraction. ΔR , which represents the electronic perturbation due to orbital mixing of the molecules is a quantity of interest which has been studied extensively in the literature¹⁴⁻¹⁶. This quantity is calculated using the refractive index mixing rules as follows:

$$\Delta R = R_{mix} - (R_1 Y_1 + R_2 Y_2) \tag{13}$$

where R_1 and R_2 are molar refractions of pure components. The excess values ΔR vs. Y_2 for all the mixtures are plotted in Figure 5.

Each set of the derived excess quantities $Z^E (= \Delta \varepsilon, \Delta (\chi_e V)_m, P_K^E, P_f^E \text{ and } \Delta R)$ discussed above was fitted to the Redlich-Kister¹⁶ polynomial equation of the type:

$$Z^{E} = C_{1} C_{2} \sum_{i=0}^{n} a_{i} (1 - 2C_{2})^{i}$$
(14)

to estimate the regression coefficients a_i and standard errors σ . Here C represents the values of mole or volume fractions. These values are listed in Table 3 and the continuous curves were generated using the values of these coefficients.

The negative values of $\Delta \varepsilon$ for $C_4 E_1$ and $C_4 E_2$ systems with water can be attributed to the formation of polar associates with lower dipole moments¹⁷⁻²⁰. It has been postulated that small negative deviations on this excess nonthermodynamic property ($\Delta \varepsilon \leq 5$) are a consequence of either a weak dipole-dipole association phenomena or

	r/K	A_0	A_1	A ₂	A_3	A_4	A_5	A_6	A_7	A_{8}	σ(10 ⁴)
	80	1 22757	120123.0	3 73454	1011155	10 55075	1006 66	13 60666	102012		195
4 1*	03	1 33195	0.0700	- 2 91259	824638	- 14 60031	1531998	- 8 64906	2.03526		160
	80	1.33132	0.63089	-2.83781	8.09390	-14.22875	14.80814	- 8.33549	1.95141		2.07
	13	1.33062	0.63893	- 3.10255	9.84197	-19.23205	21.95338	- 13.35091	3.33213		3.70
	18	1.32986	0.62387	-2.98010	9.15764	-17.31272	19.23844	-11.47011	2.82262		1.57
7	86	1.33252	0.93497	- 5.04713	16.36978	-31.63794	35.44828	-21.17808	5.20781		2.60
÷	03	1.33195	0.93148	-5.17421	17.40106	-34.84505	40.31505	-24.78309	6.25101		2.66
Ē	80	1.33133	090060	-4.84170	15.82953	-31.10774	35.59278	- 21,74649	5.46790	-	3.68
Ē	13	1.33062	0.87885	- 4.58972	14.35137	- 26.80163	29.15440	- 16.99900	4.09940	1	2.82
μJ	118	1.32986	0.87238	- 4.62353	14.75617	- 28.13450	31.16939	- 18.45064	4.50338	I	1.39
N	86	1.32503	1.40012	- 9.76796	41.21404	- 107.22448	172.39314	- 166.40225	88.20613	-19.70577	1.53
τŋ	03	1.33194	1.18327	- 7.57957	29.69382	- 72.46261	110.21532	-101.34767	51.46927	-11.06768	1.09
τŋ	808	1.33131	1.18619	- 7.83790	31.85817	- 80.52487	126.24074	-118.98110	61.60695	- 13.44518	1.82
τ η	13	1.33061	1.18367	-8.02968	33.92983	- 89.24662	144.94840	- 140.77219	74.77120	-16.68283	1.88
3	118	1.32985	1.16601	- 7.83471	32.63648	- 84.84569	136.91495	-132.72017	70.57061	- 15.78694	1.88

res
mixtı
inary
or b
on f
racti
of ref
ndices c
ofii
parameters
Estimated
able 2

Quantity*	System	a_0	aı	a2	a ₃	a4	a _s	σ
Δε	ц Ссе СССС	-24.6254 -11.2447 -98.6886	9.1370 5.7929 - 258.1398	5.4611 9.6019 - 145.7919	- 16.2711 - 5.2496 97.8771	13.1877 - 0.4357 42.4163	4.3761	1.1 1.1 0.10
P ^E K		-45.1463 -92.8731		- 127.2010 - 100.6885	- 39.2223 11.4177	27.6658 26.6848	1	1.00 0.20
P_f^{E}	C ⁴ E ⁷	68.3203 447.6845	93.9907 1159.5	- 87.4274 - 657.6976	-82.253 436.5443	-61.5325 193.0630	24.6093	0.51 0.31
$\Delta(\chi_e V_m)$	င်နိုင် ငိုင်	- 209.9472 - 43.7234	- 411.9202 29.5445	- 488.7614 - 17.2447	- 740.8372 30.8866	69.6473 31.5081	749.1	01.1 0.11
ΔR	С4Е2 С4Е3	-65.1159 -85.9214	55.4334) 77.7791	-30.2094 -100.7694		-62.2816 170.3158	86.2464 133.7483	0.16 0.27
Units*: P_{K}^{E} , P_{f}^{E} , $\Delta(\chi_{e}V_{m})$) and ΔR in	cm ³ . mole ^{~1} .						

231

Figure 5 Plot of ΔR vs. Volume Fraction of C₄E_n.

hydrogen-bonded complexes⁹. The observed behaviour of the other excess functions $\Delta(\chi_e V)_m$, P_K^E and P_f^E also leads to the same conclusion. It has been shown^{21,22} that the quantity ΔR is an indication of the modification

It has been shown^{21,22} that the quantity ΔR is an indication of the modification of the electronic polarizability of the mixtures and in most cases allows one to draw some conclusions concerning the inter and intramolecular forces operating. A negative value of ΔR has been often interpreted²³ as indicative of a tightening of the electronic system. The negative values of ΔR follow the order $C_4E_3 > C_4E_2 > C_4E_1$ (Figure 5). Incidently, the volume contraction (V_E) for these systems also follows the same order, leading to an order of modification of the electronic polarizability as follows: $C_4E_3 + H_2O > C_4E_2 + H_2O > C_4E_1 + H_2O$. Also, an increase of packing density increases the dipole concentration, leading to a lesser negative value $\Delta \varepsilon$ for $C_4E_2 + H_2O$ system compared to $C_4E_1 + H_2O$ system.

Acknowledgement

Financial support by the Natural Sciences and Engineering Research Council of Canada and University College of Cape Breton in the form of operating grants is greatly appreciated. We would like to acknowledge the partial funding in the form of salary supplement from Enterprise Cape Breton (D.T.), and Dr. E. A. Secco, of St. F.X. University, for the loan of the instrument for the dielectric measurement.

References

- 1. S. Smith, P. Wiseman, L. Boudreau, G. Marangoni and R. Palepu, J. Solution Chem. (In print) 1994.
- 2. G. Roux, G. Perron and J. E. Desnoyers, J. Solution Chem. 7, 639 (1978).

- 3. E. S. Amis, Solvent Effects on Reaction Rates and Mechanisms (Academic, New York, 1966) Chapters 1 and 2.
- 4. J. J. Lagowski (Ed.), The Chemistry of Nonaqueous Solvents, (Academic, New York 1978), Pages 121-178.
- 5. E. J. King, Acid-Base equilibria (Pergamon, Oxford, U.K. 1965) Chapters 7,8 and 10.
- J. Reddick and W. Bunger, Organic Solvents, 3rd Edition (Wiley-Interscience: New York 1970), pages 121-177.
- 7. O. W. Kolling, Trans. Kansas Acad. Science, 82, 218 (1979).
- 8. G. Douheret and A. Pal, J. Chem. Eng. Data. 33, 40 (1988).
- 9. R. Pajna and I. Theodorou, J. Phys. Chem. 78, 2892 (1972).
- 10. D. Decroocq, Bull. Soc. Chim. Fr., 127 (1963).
- 11. R. Reynaud, Bull. Soc. Chem. Fr., 532 (1972).
- 12. J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
- 13. H. Frohlich, Theory of Dielectrics, 2nd Ed. (Oxford University Press, Oxford, U.K.), 1958.
- 14. A. Abdel-Azim and P. Munk, J. Phys. Chem., 91, 3910 (1987).
- 15. T. M. Aminabhavi and R. C. Patel, J. Chem. Eng. Data, 27, 50 (1982).
- 16. T. M. Aminabhavi, J. Chem. Eng. Data, 32, 406 (1987).
- 17. Y. K. Syrkin and M. E. Dyatkina, Structure of Molecules and the Chemical Bond, (Dover, N.Y., 1964), Page 277.
- R. L. Kay, D. F. Evans and M. A. Matesich, Solute-Solvent Interactions, (M. Dekker, New York 1976) Vol. 2, page 133.
- 19. R. Payne and I. Theodoroy, J. Phys. Chem., 76, 2692 (1972).
- 20. O. W. Koolling, Anal. Chem., 57, 1721 (1985).
- 21. N. Bauer and K. Fajans, J. Am. Chem Soc., 64, 3023 (1942).
- 22. A. Braun and P. Hoeclemann, Phys. Z., 34, 357 (1936).
- 23. K. Fajans, J. Chem. Phys., 10, 759 (1942).